The conditions encountered in the womb can have life-long impact on health. Scientists have previously assumed that this is because embryos respond to adverse conditions by programming their gene expression. Now researchers propose a radically different alternative. Rather than being programmed by the environment, random differences in gene expression may provide some embryos with a survival advantage, in particular when conditions are harsh. By studying DNA methylation, an important mechanism to control gene activity, the researchers found that a specific part of the DNA methylation pattern was missing among famine-exposed individuals.
Wednesday, December 5, 2018
Selective survival of embryos under adverse conditions may explain health problems later in life
An international team led by researchers of the Leiden University Medical Center and Lund University in Sweden propose that selection of random epigenetic differences causes particular embryos to survive under adverse conditions in the womb. The embryos that survive may, however, end up with poor health as adults. The scientists report their findings in Cell Reports.
The conditions encountered in the womb can have life-long impact on health. Scientists have previously assumed that this is because embryos respond to adverse conditions by programming their gene expression. Now researchers propose a radically different alternative. Rather than being programmed by the environment, random differences in gene expression may provide some embryos with a survival advantage, in particular when conditions are harsh. By studying DNA methylation, an important mechanism to control gene activity, the researchers found that a specific part of the DNA methylation pattern was missing among famine-exposed individuals.
The conditions encountered in the womb can have life-long impact on health. Scientists have previously assumed that this is because embryos respond to adverse conditions by programming their gene expression. Now researchers propose a radically different alternative. Rather than being programmed by the environment, random differences in gene expression may provide some embryos with a survival advantage, in particular when conditions are harsh. By studying DNA methylation, an important mechanism to control gene activity, the researchers found that a specific part of the DNA methylation pattern was missing among famine-exposed individuals.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment